

Module MBB 7920 - Metal Forming Technology and Laser Material Processing

1	Module Number 7920	Study Programme MBB	Semester 6	Offered in ⊠WS ⊠SS	Duration 1 Semester	Module Type Comp. elective	Workload (h) 240	ECTS Points 8
2	Courses		Teaching and Learning Forms		Contact Time		Self-Study Time	Language
					(SWS)	(h)	(h)	English
	a) Metal Forming Technology		Lecture		4	60	120	
	b) Laser Material Processing		Lecture		2	30		
	c) Lab Metal Forming Technology		Lab		1	15		
	d) Lab Laser Material Processing		Lab		1	15		

3 Learning Outcomes and Competences

Once the module has been successfully completed, the students can...

Knowledge and Understanding

- Explain the basic processes of metal forming
- Describe sheet metal forming processes mostly used in industry
- Understand the process limits
- Describe the functionality of forming presses
- Understand possibilities of modern production processes with laser as a tool

Use, Application and Generation of Knowledge

Use and Transfer

- Create reports and presentations in English
- Develop possible process chains for new products
- Calculate sheet metal processes by FEM simulations
- Create new design concepts for parts, using sheet metals or tubes

Scientific Innovation

- Optimize existing process chains by further use of simulation tools
- Independently develop approaches for new forming concepts and assess their suitability
- Develop concepts for the optimization of forming processes
- Automatization of high volume production with sheet metals

Communication and Cooperation

- Interpret the results of FEM process simulation of sheet metal forming
- Use the learned knowledge, skills and competences to evaluate the feasibility of forming processes
- Present the feasibility to manufacture new components
- Working in groups and present new solutions for design tasks

Scientific Self-Conception/ Professionalism

- Justify the feasibility of sheet metal forming process chains and methodically
- Production of the group work sheet metal designs to see how it works

Module MBB 7920 – Metal Forming Technology and Laser Material Processing

Contents

- a) Lecture "Metal Forming Technology" (4 ECTS):
 - Plasticity
 - · Sheet metal forming: Deep drawing, drawing of complex parts, car body parts, blanking, press hardening, hydroforming
 - Hydraulic and mechanical presses, modern servo presses
 - Development of process chains
 - Applications: FEM simulation, components, case studies, weight reduction
- b) Lecture "Laser Material Processing" (2 ECTS):
 - Laser beam sources: Principle of laser and beam characteristics, beam guidance and –forming, laser security
 - Laser material processes: Cutting, welding, removing, hardening, marking, quality systems for laser material processing
 - Laser- and sheet metal processing systems: Cutting and welding systems, punching and forming of sheet metal, design of sheet and pipe constructions
 - Introduction of laser based additive manufacturing technologies: powder-bed based technologies (L-PBF-M/P), direct energy deposition (DED) and introduction to new tooling concepts such as conforming cooling channels
- c) Laboratory Exercises "Metal Forming Technology" (1 ECTS):
 - Material behaviour experiments: Work hardening, digital strain measurement
 - · Sheet metal forming experiments: Deep drawing, bending, cutting
 - Machines: Modern servo press technology in comparison to conventional presses
 - Learning the industrially used FEM simulation programme AutoForm, carrying out own process designs.
 - Independent development of a process chain: FEM, tool production, production of a component by deep drawing, trimming with laser. At the end of this exercise, each student can take an own component.
- d) Laboratory Exercises "Laser Material Processing" (1 ECTS):
 - Design of sheet metal parts in 3D-CAD-systems
 - Programming of machines for sheet metal processing
 - Manufacturing of sheet metal parts, complete sheet metal process chain incl. laser cutting

5 Participation Requirements

Recommended:

- Basic knowledge in production technology
- 3D-CAD software

6 Examination Forms and Prerequisites for Awarding ECTS Points

a) Metal Forming Technology:

Written examination 120 min., graded

b) Laser Material Processing:

Written examination 60 min., graded

Laboratory Metal Forming Technology:

Not graded (it is also possible to grade the lab exercise if students need a grade)

The prerequisite for this laboratory exercise is participation in the lecture "Metal Forming Technology".

The laboratory exercises take place on individual dates in small groups; dates are agreed in the lecture.

d) Laboratory Laser Material Processing:

Not graded (it is also possible to grade the lab exercise if students need a grade)

The prerequisite for this laboratory exercise is participation in the lecture "Laser Material Processing".

The laboratory exercises take place on individual dates in small groups; dates are agreed in the lecture.

7 Further Use of Module

Compulsory elective subject within Bachelor program.

Further use of module contents in:

- MBB Production Engineering
- MBB Automation Technology

8 Module Manager and Full-Time Lecturer

Responsible: Prof. Dr.-Ing. Stefan Wagner

Lecturer: Prof. Dr.-Ing. Stefan Wagner, Prof. Dr.-Ing. Lukas Löber

Module MBB 7920 – Metal Forming Technology and Laser Material Processing

Literature

- **Lecture Materials**
- Metal Forming Handbook, ISBN 978-3-642-58857-0
- Altan, T.: Sheet Metal Forming, Fundamentals; ISBN 978-1-61503-842-8
- Altan, T.: Sheet Metal Forming, and Applications; ISBN 978-1-61503-844-2
- TRUMPF Design Guideline for Sheet Metal Design, Fa. TRUMPF Ditzingen

10 Last Updated 02.09.2024