Themen- und Forschungsschwerpunkte

In dieser Rubrik werden die vom Institut für Technische Zuverl?ssigkeit und Prognostik (IZP) adressierten Themengebieten Zuverl?ssigkeitstechnik und PHM vorgestellt. Darüber hinaus werden die aktuellen Forschungsschwerpunkte des IZPs hervorgehoben.

Beschreibung der Themen- und Forschungsschwerpunkte

Die technische Zuverl?ssigkeit befasst sich mit der Beschreibung des Ausfallverhaltens von Komponenten und Systemen. Unter Zuverl?ssigkeit wird die Wahrscheinlichkeit dafür verstanden, dass ein Produkt unter gegebenen Funktions- und Umgebungsbedingungen w?hrend einer definierten Zeitdauer nicht ausf?llt. Die Entwicklung von neuen Produkten ist zunehmend gepr?gt von einer steigenden Komplexit?t und einem h?heren Funktionsumfang bei zugleich immer kürzeren Entwicklungszeiten. Darüber hinaus gelten aufgrund hoher Kundenanforderungen auch stetig steigende Ansprüche an die Zuverl?ssigkeit und Verfügbarkeit der Produkte. Die Absicherung der erforderlichen Zuverl?ssigkeit ist somit für den Erfolg eines Produkts von zentraler Bedeutung.

Zur Absicherung der Zuverl?ssigkeit stehen über den gesamten Produktlebenszyklus sowohl quantitative wie auch qualitative Methoden zur Verfügung. Den quantitativen Methoden werden beispielsweise probabilistische Zuverl?ssigkeitsanalysen zugeordnet. Zu den qualitativen Zuverl?ssigkeitsmethoden z?hlt unter anderem die branchenübergreifend etabilierte Fehlerm?glichkeits- und -einflussanalyse (FMEA). So ist es mit Methoden der Zuverl?ssigkeitstechnik m?glich, bereits w?hrend der Entwicklungsphase vorhandene Schwachstellen eines Systems zu identifizieren und diese frühzeitig zu beseitigen.

Ein Ziel der Zuverl?ssigkeitstechnik liegt in der quantitativen Beschreibung des Ausfallverhaltens und der Erbringung des Zuverl?ssigkeitsnachweises für technische Systeme. Basierend auf einer Analyse von Felddaten sowie der Auswertung von Lebensdauerversuchen und Schadensstatistiken einzelner Systeme k?nnen allgemeingültige Aussagen über das Ausfallverhalten einer gesamten Flotte getroffen werden. Aufgrund dieses Datenbedarfs z?hlen statistische Versuchsplanung (DoE) und eine beschleunigte Erprobung ebenfalls zu den wichtigen Bestandteilen der technischen Zuverl?ssigkeit.

Prognostics and Health Management (PHM) ist ein interdisziplin?rer Ansatz, welcher die klassischen Themengebiete der Zuverl?ssigkeitstechnik und Statistik mit Methoden der künstlichen Intelligenz sowie Bestandteilen von Industrie 4.0 vereint. PHM beinhaltet neben einer Zustandsbeurteilung auch eine Prognose über die verbleibende nutzbare Lebensdauer (engl. Remaining Useful Life – RUL).

Grunds?tzlich l?sst sich der Ablauf einer PHM Anwendung in die vier Schritte: Daten, Diagnose, Prognose und Health Management unterteilen. Kenntnisse über den aktuellen Zustand eines technischen Systems sowie eine individuelle Prognose der verbleibenden Lebensdauer bilden die Grundlage für den Einsatz fortschrittlicher Wartungsstrategien, wie beispielsweise einer vorausschauenden Wartung (Predictive Maintenance). Im Rahmen des Health Managements k?nnen die bereitgestellten Informationen für die optimierte Planung von Wartungs- und Logistikprozessen eingesetzt werden.

Eine m?glichst frühzeitige und pr?zise Vorhersage der verbleibenden nutzbaren Lebensdauer ist für die erfolgreiche Umsetzung einer PHM-Anwendung von zentraler Bedeutung.  Bei dieser individuellen Prognose gilt es die tats?chlichen Belastungen und Betriebsbedingungen sowie die bestehenden Unsicherheiten zu berücksichtigen. Für die Prognose stehen unterschiedliche Methoden zur Verfügung. Grundlegend wird zwischen modellbasierten, datengetriebenen sowie hybriden Diagnose- und Prognosemethoden unterschieden.

Die Forschungsschwerpunkte im Bereich der Zuverl?ssigkeitstechnik sind:

  • Zuverl?ssigkeit unter Betriebsbedingungen
  • Modellierung und Simulation der Zuverl?ssigkeit und
    Verfügbarkeit komplexer Systeme
  • Zuverl?ssigkeitsmodelle und -methoden

 

Die Forschungsschwerpunkte im Bereich PHM sind:

  • Datengetriebene und hybride Methoden zur Zustandsdiagnose und –prognose
  • Erweiterung datengetriebener Methoden durch Kenntnisse zum Degradationsprozess
  • Reduktion der erforderlichen Trainingsdaten durch die Verwendung von Similar System-Daten/ Transfer Learning
  • Entwicklung und Einsatz von Modell-Ensembles
  • Berücksichtigung von Unsicherheiten bei datengetriebenen Diagnose- und Prognosemethoden
  • Methodik zur Auswahl von Prognosemethoden unter Berücksichtigung industrietypischer Randbedingungen
  • Aufbau einer Datenbank für ?ffentlich zug?ngliche Degradationsdatens?tze
  • Analyse hochfrequenter Antriebsdaten bei Werkzeugmaschinen zur Zustandsdiagnose
  • Schwingungsanalyse von Antriebskomponenten
apply

Interesse geweckt? Informier dich! über unser Studienangebot